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OPTIMIZATION OF CHEMICAL VAPOR INFILTRATION WITH SIMULTANEOUS
POWDER FORMATION*

A.DITNOWSNIt,D.GOTTLIEB$,ANDB.W.SHELDON§

Abstract. A keydifficultyin isothermal,isobaricchemicalvaporinfiltrationis the longprocessing
timesthat aretypicallyrequired.With this in mind,it is importantto minimizeinfiltrationtimes.This
optimizationproblemisaddressedhere,usingarelativelysimplemodelfordilutegases.Theresultsprovide
usefulasymptoticexpressionsfor theminimumtimeandcorrespondingconditions.Theseapproximations
arequantitativelyaccurateformostcasesofinterest,whererelativelyuniforminfiltrationisrequired.They
alsoprovideusefulquantitativeinsightincaseswherelessuniformityisrequired.Theeffectsofhomogeneous
nucleationwerealsoinvestigated.Thisdoesnotaffectthegoverningequationsfor infiltrationof aporous
body,however,powderformationcanrestrictthe rangeof permissibleinfiltrationconditions.Thiswas
analyzedforthecaseof carboninfiltrationfrommethane.

Key words, composites,chemicalvapordeposition(CVD),optimization,computersimulation,theory

Subject classification.PhysicalSciences

1. Introduction. A varietyof materialsareproducedbyinfiltrationprocesses.In thesetechniquesa
fluidphase(i.e.,agasora liquid)istransportedintoaporousstructure,whereit thenreactstoformasolid
product.Thesemethodsareparticularlyimportantfor producingcompositematerials,wheretheinitial
porousperformiscomposedof thereinforcementphase(i.e.,fibers,whiskers,orparticles)andinfiltration
producesthematrix[I], [2].A detailedassessmentoftherelevantreactionandmasstransportratesduring
infiltrationrequiresmathematicalmodeling,usingaminimumof twocoupledpartialdifferentialequations
whichdescribechangesin thereactantconcentrationandthesolidstructureasa functionofbothposition
andtime.Thistypeofmodelingcanalsobeextendedto analyzetheoptimizationandcontrolofinfiltration
processes.

Theresearchpresentedherespecificallyconsidersoptimizationforasetoftwoequationswhichdescribe
isothermal,isobaricchemicalvaporinfiltration(CVI).Inthisprocessavapor-phaseprecursoris transported
intotheporouspreform,andacombinationofgasandsurfacereactionsleadsto thedepositionofthesolid
matrixphase.Duringinfiltrationtheformationofthesolidproductphaseeventuallyclosesoffporosityat
theexternalsurfaceofthebody,blockingtheflowof reactantsandeffectivelyendingtheprocess.Thisisa
keyfeatureofmostinfiltrationprocesses.Isothermal,isobaricCVI oftenrequiresextremelylongtimes,so
it isgenerallyimportantto minimizethetotalprocessingtimes.

Thispaperconsiderstheproblemofdeterminingtheoptimalpressureandtemperaturewhichcorrespond
to theminimuminfiltrationtime. Froma practicalperspective,thenatureof theporouspreformis often
predeterminedbytheintendedapplication(e.g.,thephysicaldimensionsandthefibersizeareinvariants).
Thus,theprocesscanonlybecontrolledwithprocessvariables:temperature,pressure,andgascomposition.
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Note that the pressure and temperature determine several different physical quantities in the model, such that

the general understanding of the optimum conditions is not immediately obvious from the basic formulation.

Several previous efforts have addressed minimal infiltration times [7], [8], [9], [10], [11]. The work

described here differs from these previous efforts in several ways. First, the asymptotic solutions obtained

here make it possible to estimate the optimal conditions without conducting detailed numerical calculations.

This paper uses a relatively simple mathematical model which is based on the diffusion and reaction of

a single, dilute precursor. However, the numerical results which are used to verify and understand the

limitations of the asymptotic results are generally similar to previously reported numerical results. Also, the

results presented here are based on carbon CVI from methane, in comparison with previous efforts on CVI

optimization which have emphasized SiC CVI from methyltrichlorosilane. The use of different chemistry does

not change the general conclusions obtained here, however, the actual values do correspond to a somewhat

different process. This paper also considers an additional constraint due to homogeneous nucleation (powder

formation), which has not been treated in previous efforts. Powder formation can be significant in many

CVI processes (including carbon formation), and this effect can alter the optimal temperature and pressure

under certain conditions.

This paper is organized as follows: Section 2 presents the basic set of two partial differential equa-

tions used to model isothermal, isobaric CVI (including initial and boundary conditions). A definition for

a successful process and a discussion on the optimization problem is given. In Section 3 an analysis of the

optimization problem is given. The analysis performed is based on asymptotic expansions as well as compu-

tations. The results of the analysis are optimal working pressure and temperature. In Section 4 the effects

of powder formation in the analysis are included in the analysis; here too the pressure and temperature to

minimize the final time are provided. In Section 5 a discussion of the significance of these results is presented.

2. Formulation. A mathematical description of infiltration requires one or more partial differential

equations which describe the evolution of the matrix (i.e., the solid phase), and one additional partial

differential equation for each chemical species in the fluid phase. For a simple pore structure, the continuity

equation for species i is

(2.1) O(cCi) n,,
o_ + V" Ni = E tqrRr

T

where t is time, c is the void fraction of the media, Ci nd Ni are the concentration and the flux of species i,

nr is the number of the gaseous species, t'ir is the stoichiometric coefficients for the ith gaseous species in

the rth reaction, and Rr represents the volumetric reaction rate of reaction r.

The basic partial differential equation(s) which describe reaction and mass-transport in porous media

(i.e., the fluid phase) are well-established [3], [5]. For example, the Dusty-Gas model [6] is typically used to

describe multicomponent diffusion and convection in a porous body.

Ni RT _ CjNi - CiNj CiB¢(2.2) +- -- - -v<---vPP #DK_j#i

The simplest formulation for the fluid phase is obtained by considering one reacting species. For highly

diluted reactant systems, the Dusty-Gas model can be simplified to give the following approximate expression

for the flux in one spatial dimension (Z):

0C

(2.3) N = -DoT



whereC is the concentration of the diluted species and Z is the distance into the preform. It is convenient to

write C in terms of the temperature T, the total pressure, P, and the mole fraction of the reacting species,

X:

XP
(2.4) C -

RT"

For a diffusion-limited process, with one dilute reactant species in one spatial dimension, Eq. (2.1)

becomes (using Eq. (2.3) and Eq. (2.4)):

o(cxP)ot - oz° [D w uSv(c)VM(2.5)

where VM is the molar volume of the solid product , u is the rate at which the solid product grows (vol-

ume/area/time) and Sv (c) is the gas/solid surface area per unit volume of the porous solid. The last term in

Eq. (2.5) describes the rate at which the gas-phase precursor is consumed (or created) by chemical reactions

inside of the pores, with the assumption that there are no homogeneous gas-phase reactions.

Describing the evolution of the matrix phase is equivalent to considering the change in the void fraction,

c (i.e., the volume fraction of gas inside of the porous solid). The evolution of c is given by:

(2.6) 0c_ uSa(c).
Ot

The boundary conditions most often used for CVI models are to fix the concentration at the outer surface

of the preform, and to assume that diffusion occurs in from two opposite sides, such that there is no net flux

in the middle of the preform (i.e., at Z = L, where L is the half-thickness of the preform):

(2.7) x(o, t) = Xo

(2.8)

where z --- Z/L.

The initial condition is given by:

X_(1, t)=0

(2.9) c(z, 0) = c0(z).

A specific CVI model requires expressions for u, S_, and D. Our objective in this work is to use relatively

simple formulations for each, as a basis for assessing optimization during isothermal, isobaric CVI. As an

example, consider the formation of carbon matrix composites from a mixture of CH4 in an H2 carrier gas,

where the following net reaction occurs:

(2.10) CH4 (g) -_ C(s) + 2 H2(g).

The form of Eq. (2.5) is based on the assumption that the CH4 concentration, C, is dilute (i.e., the reactant

concentration is much smaller than the carrier gas concentration). If the carbon growth rate is proportional

to the precursor concentration, then:



xP

(2.11) u = kR_

where k is the reaction rate constant (with units 1 ) and R is the gas constant. The standard Arrheniustime

expression for k is:

(2.12) k = Ak exp(-Q/T)

where Q is the activation energy divided by the R and Ak is a pre-exponential factor.

The preforms used for CVI typically have a complex porous structure. However, a cylindrical pore is

often used to formulate simple models. This leads to the following expression for Sv:

(2.13) Sv(c)- 2v_°v/_
FO

where r0 is the initial pore radius and Co is the initial concentration of c.

The effective diffusivity of the dilute species, D, can be expressed as

(2.14) D = _DM [1 + Nk(_)] -1

AMT3/2
DM--

P

where DM is the binary diffusion coefficient for the reactant species in the carrier gas (e.g., CH4 in/-/2), AM

is a species dependent constant, Nk is the ratio of DM and the Knudsen diffusion coefficient, and 0 is the

tortuosity factor. For randomly distributed cylindrical pores, 0 is estimated to be 3, and Nk is given by:

where

ADT

Nk = @/2p

(2.15) AD --
AM?7oT*I/2

DOp

D ° is the Knudsen diffusion coefficient for the initial pore size, at some reference temperature T*.

Substituting Eqs. (2.11) and (2.13) into Eqs. (2.6) and (2.5) gives the following forms:

O_(z,t) _ 9_c(z'(2.16) t)
Ot 2

OzO( .,, Oc(z,t) _/(2.17) f (_(z, _))_ J = a 2 _(z, t)c(z, t)



TABLE 2.1

Values of the constants.

Ac_

A9

--
Q

AD: 10tt m diam fibers

8%m diam fibers

200tt m diam fibers

6.35 (10) 21 K 3/2 arm -1

3.64 (10) TM K 3/2 arm -1 sec -1

0.85

55000 K [17]

1.54 (10) -5 atm/K

1.93 (10) -6 atm/K

7.7 (10) -7 atm/K

where

P73

(2.18) f(7) = 3(P7 + ADT)

(2.19) 7 = v f_

pe(-Q/T)

(2.20) a 2 = As T3/2

XoPe(-Q/T)
(2.21) /_ = A_ T

(2.22) As- 2Aavf_°L2
VMroAM R

(2.23) A9_ 2Akv_
r0R

Where r0 is the initial pore radius and X0 denotes the fraction of the active gas in the inlet (at z = 0). Note

that a2 is dimensionless and that /_ has units of inverse time. The time derivative in Eq. (2.5) has been

removed in Eq. (2.17), which is permissible because a pseudo-steady state C profile is achieved in a short

amount of time (i.e., compared to the time scale over which c changes) [4]. Transforming c to 7 simplifies

equation (2.16). Note that 7 is proportional to Sv, so 7 can be viewed as a dimensionless surface area per

volume. Values of the constants in Eqs.(2.18)-(2.23) are given in Table 2.1, for the case of carbon CVI from

methane, (see Eq.(2.10)), with a preform thickness of 2 L = 3mm.

The system (2.16), (2.17) is subject to the initial condition

(2.24) 7(z, 0) = 7o(Z).

This paper treats only the case of a uniform initial condition, 7o (z) = 7o. The boundary conditions are (see

(2.7), (2.8)):

(2.25) c(0, t) = 1

(2.26) c3__ = 0.
OZ

zzl

With this model it can be shown that:

* The value of the void function in the inlet z = 0, is

(2.27) 7(0,t) = 7o - _t



• There exists a critical time tc 2_0 At this time, the void function vanishes at z = 0, the inlet
-- /3 "

closes completely, and the process ends.

• The void function 7 and the concentration function c are bounded from above and below. 0 <

c(z,t) < 1, 7(0, t) < 7(z,t) < 70 for t < tc 2vo

• For any time t < to, the void function 7(z, t) is monotonically increasing function of the spatial

variable z.

• The concentration function c(z, t) is monotonically decreasing function of the spatial variable z.

The literature on diffusion and reaction in porous media typically uses a dimensionless ratio of the diffu-

sion and reaction rates, sometimes known as the Thiele modulus. This parameter varies during infiltration,

because of changes in the microstructure with time. Thus, previous CVI modeling has used an initial Thiele

modulus as an approximate assessment of the relative infiltration kinetics [4], [7], [8]. In terms of the for-

mulation specified here, the initial Thiele modulus is equal to c_27(z, O)/f(7(z, 0)). In general, when c_2 is

small, diffusion is fast and infiltration is relatively uniform. When c_2 is large, the deposition reaction is fast

and infiltration is highly non-uniform.

The parameters c_2 and/3 depend on the three key process variables: T, P, and X0. Process optimiza-

tion during CVI is achieved by setting these variables to optimal values. In isothermal, isobaric CVI the

infiltration kinetics are controlled by diffusion and the deposition reaction. To achieve relatively uniform

infiltration, diffusion must be fast relative to the deposition rate. This is typically accomplished by choos-

ing processing conditions that result in a slow deposition rate, which usually leads to long infiltration times.

Thus, the primary basis for process optimization is to obtain the desired amount of infiltration in the shortest

possible time.

A general definition of a successful process includes two considerations:

1. At the end of the process ( at time t = tf) the void function 7(z, tf) should be a small fraction of

its initial value, either in the whole interval or in a certain portion of the interval 0 < z < Zl.

2. For the process to yield good results it is important that the void function is uniformly small along

the z axis.

Mathematically, we express these considerations by stating that a process is successful if for some time tf

(2.28) 7(zl,tf) _ ]_170

(2.29) 7(0, t f) = k070

k0 << 1, k0 < kx. Equation (2.28) states that the final values of the void function 7 should be small in

the interval between the inlet and the point Zx (note that 7(z, t) is monotonically increasing function of the

spatial coordinate z). In most problems of interest Zx = 1. Conditions (2.28) and (2.29) state that the void

function should be uniformly small. Also, from (2.27), (2.29), the final time, t f, is given by:

2

(2.30) tf = (1 - k0)70 _.

Note that the time for the process to end decreases as a function of/3 (itself a function of the temperature

and pressure, given in (2.21)).

The goal of the analysis in the following sections is to find the temperature and pressure that minimize

the final time tf for achieving a successful process.



3. Analysis of the Optimization Problem. Evaluation of Eq. (2.27) requires an approximation for

_(Zl, t/) in terms of the pressure and temperature. There are two ways to obtain it: either by asymptotic

expansions or by direct numerical solution of the system (2.16),(2.17).

3.1. Asymptotic Expansions. The set of equations (2.16), (2.17) is nonlinear and explicit solutions

can not be obtained. However some analytical approximation may be derived by noting that in most of the

problems of interest a 2 is small, and therefore it makes sense to expand the solutions in power of a 2. The

details of obtaining this expansion to order a 2 will be given elsewhere [16]. For small a 2 the final result is:

f(E)
(3.1) c(z, t) _ 1 - a2(z - z2/2)

E

(3.2) rl(z,t)_E(t)+3aZ(z-z2/2) log rio +_-- E rio

Where

(3.3) E(t) = rlo - /3t
2

(_2) 2It can be shown that the error in the expansion is proportional to _o , where ko is the ratio between the

final void function at the inlet and its initial value, as defined in (2.29). In the next subsection the numerical

results and the asymptotic expansions are compared, to demonstrate the validity of the expansions in the

range of relevant a 2.

The asymptotic expansion (3.2) is used to get an explicit form for the uniformity constraint (2.28) in

terms of the temperature T and the pressure P. Substituting (3.2) into (2.28) gives:

[ (I) ADT(I )](3.4) korlo + 3a2(Zl - z_/2) log koo + --Prlo ko - 1 _< klrlo

Substituting a 2 from (2.20) and rearranging gives:

(3.5) J(P,T) <_ (]gl --]g0)/_0 •

where

(3.6) j(p,T)=3AaT__/2e_Q/T(zl_z_/2) [log (_o) + ADTprl_(_o - 1)]

Rearranging terms shows that uniformity is assured if

(3.7) P < B°T3/2eQ/T - B°T
- B2 Be '

where

?_0(kl -- k0)

(3.8) Bo =
d a(zl - z1 /2)

(3.9) B1 = AD(1 _ 1)
rio ko

(3.10) Be = log(7-i ).
go

These results can now be used to approximate the temperature and pressure that minimize the infiltration

time. Recall (see (2.30)) that the final time t/ is inversely proportional to/3 given in (2.21). The final time

t/ is therefore minimized if the function



p

(3.11) F(P, T) = T e-Q/T

is maximized under the uniformity constraint (2.29). Inspection of (3.11) shows that in order to maximize/3

we have to take the equality sign in (3.7). Substituting this into (3.11) , it is easily verified that the following

function must be maximized:

(3.12) G(T) = B°T1/2 - Ble-Q/T
B2 B2

This indicates that the final time tf to achieve a successful process is minimized by choosing temperature

and pressure satisfying

(3.13) T3/2eQ/T - BIQ
Bo

B1

(3.14) P = _-2 (Q - T).

Moreover the minimal final time t_ in is given by

(3.15) t_in 2(1 -ko)log(1/ko) A_Q 3(Zl -z2/2) T1/2( _ T)= AgXo

Where the temperature T is given by (3.13).

The explicit formulas (3.13)-(3.15) lead to the following observations:

1. The minimum final time, t_ i_, decreases as AD decreases. (For example, as the molecular diffusion

becomes dominant.)

2. t_ i_ decreases as kl increases. This reflects the fact that increasing kl relaxes the uniformity

condition.

3. As Zl increases toward Zl -- 1, the minimum final time t_ i_ increases.

3.2. Computational Results. In the previous subsection the asymptotic expansion of _ was used to

define a functional J(P, T) such that each pair P, T that satisfies J(P, T) <_ (kl - k0) 770leads to a solution

that satisfies the conditions for a successful process, (2.28), (2.29). The optimal P and T was then obtained

based on the final time. This result is approximately correct since the asymptotic expansion was used to

approximate condition (2.28). This section uses numerical solutions of (2.16), (2.17) to create a 'numerical

J functional', (i.e., a functional relation between P and T that ensures a successful process).

Two algorithms were used to solve this problem: one based on a finite difference approximation and one

on spectral methods. These are described in the Appendix. The schemes were run with k0 -- 0.1, Zl -- 1 and

kl : 0.15 or 0.7. Note that kl : .15 corresponds to relatively uniform infiltration while kl : .7 is relatively

non-uniform. Although most applications require relatively uniform infiltration (i.e., lower kl), there are

some cases where a non-uniform profile may be desirable. Two reasons for a higher kl are that it enables

faster infiltration times, and it produces materials with lower density. For example, both of these attributes

are desirable during the formation of thin carbon-carbon composites for bipolar plates in proton exchange

membrane (PEM) fuel cells [18].

Three values were taken for AD, 1.54 (10) -5, 1.93 (10) -6 and 7.7 (10) -7 (see Table 2.1). Plots of the

numerical and the asymptotic J curves are presented in Figure 3.1, plots of tf vs. P are presented in

Figure 3.2.
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F_G. 3.1. J-Curves obtained both numerically (solid lines) and by asymptotic analysis (dotted lines). Conditions on or

below these lines will satisfy the uniformity condition (Eq. (3.35)). Conditions above this line do not satisfy the uniformity

condition. All cases here correspond to Xo = 0.1, with: (a) kl = 0.15, 10#rn diameter fibers; (b) kl = 0.15, 200#rn diameter

fibers; (c) kl = 0.7, 10#rn diameter fibers; (d) kl = 0.7, 200#rn diameter fibers.
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F_G. 3.2. Times which correspond to conditions on the J-curves in Figure 3.1, with values obtained both numerically

(solid lines) and by asymptotic analysis (dotted lines). The filled circles show the minimal time. (a) kl = 0.15, 10_tm diameter

fibers; (b) kl = 0.15, 200#m diameter fibers; (c) kl = 0.7, 10#m diameter fibers; (d) kl = 0.7, 200#m diameter fibers.

The process is very sensitive to changes in the temperature T, as can be seen, for example, by comparing

the results for P = .latm,T = 1387K, vs. P = .1arm, T = 1448K (for kl = 0.7 and AD = 1.54(10)-_).

Increasing temperature by 61 degrees, (_ 4_), decreases the final time from 160.3min to 31.4min, i.e., by a

factor of 5 and produces an infiltration profile which is much less uniform. This occurs because of the strong

temperature dependence of the deposition reaction. As the fibers size increases tI decreases slightly and the

minimal time occurs at lower pressures.

When the uniformity requirement dictates that kl = .15 in (2.28), the condition J(P, T) = (kl - k0)r]0

yields a P and T pair such that c_: _ .01. In this case, the asymptotic expansions agree well with the

numerical results. The predicted temperature that assures uniformity differs by only few degrees from the

one obtained numerically, and tI differs by less than 10_. When kl was increased to 0.7, The large value of

c__ , (_ 0.1) leads to more inaccuracy in tI, (See Table 3.1). However, the optimal temperatures predicted

by the asymptotic result is still accurate within 10%.



TABLE 3.1

tf for the optimal P and T.

Numerics Asymptotics

AD ]gl P [atm] T [K] tf [HI P [atm] T [K] tf [HI

1.54 (10) -5 0.15

1.93 (10) -6 0.15

7.7 (10) -7 0.15

1.54 (10)-5 0.7

1.93 (10)-6 0.7

7.7 (10) -7 0.7

6.605 1201.65 16.03

0.830 1258.48 15.27

0.334 1389.75 14.93

3.185 1338.99 0.3934

0.375 1492.76 0.3727

0.155 1573.00 0.3632

7.694 1195.06 17.62

0.962 1251.37 16.80

0.373 1282.43 16.42

7.694 1265.75 1.428

0.962 1405.28 1.357

0.373 1478.51 1.324

In all cases, the asymptotic results agree qualitatively with the numerical results. The curves obtained

numerically were almost parallel to the asymptotic, and the points of minima are almost in the same place.

The asymptotic results are conservative, they always overestimated the final time, and gave more restrictive

conditions on P and T for uniformity, i.e., P and T obtained by the asymptotic analysis never predict a

successful process if it does not exist. However, since P and T obtained by the asymptotic analysis may be

much different from the optimal ones (obtained by the numerical analysis), tf may be much larger then the

minimal value (See Table 3.1).

4. Homogeneous Nucleation. CVI processes can be limited by homogeneous nucleation (i.e., powder

formation) in the gas phase. This effect has not been treated in previous CVI models because it generally

occurs outside of the solid preform. However, powder formation can impose serious limitations on CVI

operating conditions during the formation of carbon and oxide matrices. Thus, this phenomena imposes a

constraint on the allowable CVI operating conditions. Nucleation kinetics are typically described with:

(4.1) I = ZIJ*A* (XoP/RT) exp(-Ag*/kBT)

where I is the steady-state nucleation rate, A* is the area of a critical cluster, J* is the flux at which

atoms are added to a critical cluster, Ag* is the free energy barrier to forming a critical cluster, kB is

Boltzmann's constant, and Z1 is the so-called Zeldovich factor, see [12]. A rigorous model requires that Z1

be evaluated numerically, however, using standard approximations for ZI, the pre-exponential terms in (4.1)

can be combined to give:

(4.2) I =_ (Xo P/RT)22(_//kB T) 1/2 Ak exp ( -- Q/RT) exp ( - Ag*/kT)

where 7 is the surface free energy of the cluster, and the constants Ak and Q describe the reaction rate

constant (see (2.12)). In practice, the permissible value of I depends on the reactor configuration, as well as

its actual value. For the current analysis, we assume that powder formation limits CVI when the nucleation

rate exceeds some allowable level, Ilim. With this in mind, Eq. (4.1) can be revised to yield:

10



b)

F_G. 4.1. Effect of homogeneous nucleation for kl = 0.7, X0 = 0.01, 10#m diameter fibers. (a) The numerically obtained

J-Curve (uniformity constraint, Eq. (3.5)) and the I-curve (nucleation limit, Eq. (_.3) with Allm ---- 2.0 1021). (b) Limiting

time as a function of pressure. The left part of the curve is determined by the numerically obtained J-curve and the right side

is determined by the I-curve, with the minimal time shown by the filled circle. The dotted line corresponds to the approximate

J-curve which was determined with asymptotics.

(4.3) Ali,_ = Ili,_kl/2/Ak7 = (XoP)2/T _'5 exp(-A_/T "_)

where the two exponential terms in Eq. (4.2) have been combined to give one term with two empirical

constants, A_ and m. Since Ag* can have a relatively complex T dependence, this empirical approach

was adopted to provide a relatively simple expression. This form was applied to the results of Loll et

al., who report threshold conditions for the onset of significant nucleation (i.e., X0 vs. T at P = latm)

[13], [14]. A good fit to their experimental data was obtained with m = 1.5, A_ = 750,000 K "_, and

Azi,_ = 3.3 (10) -17 atm_/K _'5. In general, the value of Azi,_ is somewhat arbitrary, since it reflects a

threshold for a given reactor. By varying Azi,_, it is possible to assess different tolerance levels for powder

formation. For example, recent carbon CVI experiments at Oak Ridge National Laboratory tolerate higher

powder formation levels than those described by Loll et al. with a threshold value that corresponds to

Ati,_ = 2.0 (10) -21 atme/K _'5 [15].

The effect of adding the powder formation constraint can be seen from Figure 4.1, where the/-curves

are defined by Eq. (4.2). As seen in Figure 4.1a, the new constraint limits the pressures and temperatures

to values which are below both the I and the J-curves. For a given pressure, the minimal t] corresponds

to a temperature on either the I or J-curve (whichever is lower). Thus if the minimal t] found in Section 3

(i.e., when P and T are on the J-curves) to the left of the/-curve, then the additional constraint does not

change the previous results. If, on the other hand, this point is on the right of the/-curve then, the minimal

t] occurs at the intersection between the I and J-curves. This point can be clearly seen as a cusp in the t]

vs. P in the right plot.

A complete assessment of X0 effects requires solutions with the full Dusty-Gas model, because large

values of X0 violate the assumption of a dilute reactant gas. However, considering only values up to X0 = 0.1

provides useful insight into optimizing dilute systems. Without the homogeneous nucleation constraint (i.e.,

as Ati,_ --+ oc), the minimal time is inversely proportional to X0, and the optimal pressure and temperature

do not vary with X0 (see Section 3). However, homogeneous nucleation limits the operating conditions when

11
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F_G. 4.2. Effect of Xo with 10#m diameter fibers: (a) optimal pressures; (b) optimal temperatures; (c) minimum infiltration

times and with 200#m diameter fibers: (d) optimal pressures; (e) optimal temperatures; (f) minimum infiltration times.

Ati,_ is low enough, as illustrated in Fig 3. The effect of this limitation on the optimal conditions and on

the minimal time are shown in Figs. 4 and 5. These results lead to the following conclusions:

1. As in Section 3, the asymptotic results are in good agreement with the numerical results for kl -- .15,

where a _ _ .01, and much less accurate in the case kl -- .7 where a _ _ .1. In both cases, however,

the asymptotic results agree qualitatively with the numerical results.

2. Notwithstanding the dilute reactant gas restriction, t] are monotonically decreasing functions of

X0, thus it is advisable to work in the 'highest' X0 possible. However since the optimal P is also

a monotonically decreasing functions of X0, this value of X0 is limited by the lowest operational

12



F_G. 4.3. Effect of Alim on tf, with kl = 0.15: (a) 10#m diameter fibers and Xo ---- 0.1; (b) 10#m diameter fibers with

Xo = 0.02; (c) 10#m diameter fibers with Xo = 0.1. All values are based on numerical results.

a) b)

_i_'_ ¸ _ _t._ _! _!_ _

...........3_ ................................

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY_I_YYYYYYYYYYYYYYYYYYYYYYYYYYYYYY_

F_G. 4.4. Effect of All m on the optimal pressure (a) and temperature (b), for the same cases plotted in Fig. 5.

pressure. For example for working pressure of about 0.01arm , the maximum allowable X0 is only

0.05, for 200t_m diameter fibers (AD = 7.7 (10)-7 arm K -1 ).

3. For a given X0, as the fiber diameter increases, P and tf decrease and T increases. But unlike

Section 3, the differences here are significant. This occurs because the homogeneous nucleation

condition forces us to work in a region where the dependence on AD is much stronger.

4. The homogeneous nucleation constraint causes the optimal temperature and pressure to vary with

X0.

As the value of Alim increases, the effects of homogeneous nucleation are less severe. This can be seen

in Fig. 6, which shows the effects of varying Ili,_. Note that the minimum infiltration time is dramatically

increased when there is a significant limitation imposed by homogeneous nucleation. In general, the process

must be operated at lower pressures to avoid powder formation. Some increase in the corresponding optimal

temperature accompanies this decrease in pressure. The slope discontinuities in Fig. 6 correspond to the

conditions where the homogeneous nucleation constraint no longer has an effect, (i.e., the optimal conditions

are determined solely by the J curve).
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5. Conclusions. Minimizing infiltration times for isothermal, isobaric CVI is important because pro-

cessing times are typically very long. The work presented here provides a detailed assessment of the pressure

and temperature which will minimize the total required time, based on a simplified model for a single, dilute

reactant species. This formulation makes it possible to understand the basic physics of the problem in terms

of a relatively small number of lumped parameters. The basic objective of this optimization problem is to

obtain a density profile with a prescribed amount of uniformity, in the shortest possible time (Section 3).

The asymptotic results are particularly useful, because they make it possible to determine optimal conditions

without doing numerical calculations (under conditions where a 2 is small enough). Based on comparisons

with the numerical results, the asymptotic forms are also qualitatively accurate when a 2 is larger. Thus,

the asymptotic results provide a clear understanding of how the optimal conditions are related to the key

parameters for the problem.

The effects of homogeneous nucleation were also analyzed, as an additional constraint on the basic

optimization problem. This issue has not been considered in previous work on CVI modeling, however,

it can limit operating conditions in systems were powder formation is significant (e.g., the formation of

carbon matrix composites). The results obtained here provide a quantitative assessment of the conditions

where homogeneous nucleation imposes limitations on infiltration conditions. When these limitations occur,

powder formation also increases the minimum infiltration time.

6. Appendix. To gain confidence in our computations, two completely different numerical methods

were used: the pseudospectral method and a finite difference method.

* In the pseudospectral Chebyshev method the grid points is chosen to be

( 3-J1 +
c°s'T' 0 _ j _ N(al_,,_._, Zj -- 2

where N is the total number of grid points and was 10 for most of the runnings.

The spectral differentiation matrix takes the value of a given function at the g rid points zj and

yields the values of the derivative of the interpolation polynomial at these points. The points zj

are the nodes of the Gauss Lobatto Chebyshev quadrature formula. The matrix can be written

explicitly:

(6.2)

1 cj (--1) j+k
Djk = 2 ck sin 2-_(J+k) sin 2-_(--J+k) j _ k,

1 zj
D33 -- 2sin2(_j) J S0, N ,

2N2+1
Doo = --DNN -- 6

We apply the matrix Djk twice, once for the vector c taking into account the boundary condition

c(O,t) -- 1 and then to f(_)Cz and taking into account that Cz(1,t) -- 0. This yields a linear system

for the values of c(zj, t).

In the next stage we update _ by the standard third order Runge-Kutta scheme.

* A second-order finite-difference scheme using the equidistance grid

J
(6.3) zj - N - j h O < j < N .

14



The differentiation matrix can be written explicitly:

1
Dll - _ (f(zl - h/2) + f(zl + h/2))

D12 -- _f(zl + h/2)

Djj_ 1 1- wf(zj-h/2)
1

Djj - _ (f(zj - h/2) + f(zjh/2))

Djj+I -- _f(zj + h/2)

j--1

j--2...N-1
2

DNN--1 -- _f(1 -- h/2)

_ 2 (f(1- h/2) +_2 7)DNN

f in the mid-points was interpolated. In each step we solve the system

( )
De---- . ,

0

In the next stage we use c to update zl by the standard fourth order Runge-Kutta scheme. Since

this scheme is less accurate we used 80 grid points.

The results of both schemes were compared and the differences in Zl(Z, t]) were less then 10 -6.
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